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Non-equilibrium wetting transition in a magnetic Eden model
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Abstract. Magnetic Eden clusters (Ausloos et al., Europhys. Lett. 24, 629 (1993)) with ferromagnetic
interaction between nearest-neighbor spins are grown in a confined 2d-geometry with short range magnetic
fields acting on the surfaces. The change of the growing interface curvature driven by the field and the
temperature is identified as a non-equilibrium wetting transition and the corresponding phase diagram is
evaluated.

PACS. 75.70.-i Magnetic films and multilayers – 05.70.Np Interface and surface thermodynamics –
68.45.Gd Wetting

1 Introduction

The study of irreversible growth models is a subject that
has attracted growing attention during the last decades.
Nowadays, this interdisciplinary field has experienced a
rapid progress due to both, their interest in many sub-
fields of physics, chemistry and biology, as well as by their
relevance in numerous technological applications. Recent
progress in our understanding of growth phenomena, with
special emphasis on the properties of rough interfaces, has
been extensively reviewed [1–5]. On the other hand, the
interaction of a bulk phase of a system with a wall or a
substrate may result in the occurrence of very interesting
wetting phenomena. Wetting transitions have been exper-
imentally observed and theoretically studied in a great
variety of systems in thermal equilibrium, for reviews
see e.g. [6, 7]. In contrast, the study of wetting phenom-
ena under non-equilibrium conditions has, so far, received
much less attention. Within this context, very recently
Hinrichsen et al. [8] have introduced a non-equilibrium
growth model of a one-dimensional interface interacting
with a substrate. The interface evolves via adsorption-
desorption processes which depart from detailed balance.
Changing the relative rates of these processes, a transi-
tion from a binding to a non-binding phase is reported [8].
In fact, in the study of wetting phenomena under equilib-
rium conditions, wetting transitions are usually associated
to the onset of unbinding of an interface from a wall [9].
The aim of this work is to study the properties of a non-
equilibrium wetting transition which takes place in a vari-
ant of the irreversible Eden growth model [10], where the
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particles are replaced by spins which may adopt two dif-
ferent orientations. Such model is known as the magnetic
Eden model (MEM) and has been proposed by Ausloos
et al. [11]. The MEM has originally been motivated by
the study of the structural properties of magnetically tex-
tured materials [11]. In the present work, the growing sys-
tem is confined between two parallel walls where short
range boundary magnetic fields interact with the spins.
Our investigation of the properties of the MEM in such
stripped geometry is also motivated by recent experiments
where the growth of quasi-one-dimensional strips of Fe on
a Cu(111) vicinal surface has been studied [12]. Also, in a
related context, the study of the growth of metallic multi-
layers have shown a rich variety of new physical phenom-
ena. Particularly, the growth of magnetic layers of Ni and
Co separated by a Cu spacer layer has recently been stud-
ied [13]. In this case, the interaction between magnetic
atoms in the bulk of the respective layer may be different
than that of such atoms at the surface in contact with the
Cu layer. Such interaction may, in principle, be modeled
by introducing a short range boundary magnetic field, as
we have proposed in the present work.

2 The model and the Monte Carlo simulation
method

In the classical Eden model [10] on the square lattice, the
growth process starts by adding particles at the immedi-
ate neighborhood (the perimeter) of a seed particle. Sub-
sequently, particles are sticked at random to perimeter
sites leading to the formation of compact clusters with
a self-affine interface [2–4]. The magnetic Eden model
(MEM) [11] considers an additional degree of freedom due
to the spin of the growing particles. While early studies
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of the MEM have been performed using a single seed
placed at the center of the sample [11], for the purposes of
the present work we have adopted a different geometry. In
fact, we have studied the MEM on the square lattice in a
rectangular (or stripped) geometry of L×M (1 ≤ i ≤M ,
1 ≤ j ≤ L) with L�M . The seed is a column of L spins
located at i = 1 and cluster growth takes place in one
direction only, say for i ≥ 2. Open boundary conditions
are also considered. A surface magnetic field H, acting on
the sites placed at j = 1 and j = L, accounts for the in-
teraction between the walls and the spins. It is assumed
that each spin Sij may adopt two possible orientations,
namely up and down (i.e., Sij = ±1). Clusters are grown
by selectively adding spins at perimeter sites, which are
defined as the nearest-neighbor (NN) empty sites of the
already occupied ones. Considering a ferromagnetic inter-
action of strength J > 0 between NN spins, the energy E
of a given configuration of spins is taken to be

E = −(J/2)
∑
〈ij,i′j′ 〉

SijSi′ j′ −H
∑
〈i,S〉

(Si1 + SiL), (1)

where 〈ij, i′j′〉means that the summation in the first term
is taken over occupied NN sites and 〈i, S〉 denotes that the
second summation has to be taken over occupied sites on
both surfaces. Thus, measuring the absolute temperature
in units of J (the Boltzmann constant is set to unity),
and the energy and the surface magnetic field in units of
J , the change of energy ∆E involved in the addition of a
spin Sij to the system is given by

∆E/T = −(1/T )Sij
∑
〈ij,i′ j′ 〉

Si′ j′

− (H/T )(Sijδj1 + SijδjL), (2)

where the summation 〈ij, i′j′〉 is taken over occupied NN
sites keeping i, j fixed, and δj1 and δjL are standard
Kronecker delta symbols. Therefore, the probability of
a perimeter site to be occupied by a spin Sij is pro-
portional to the Boltzmann factor exp(−∆E/T ), where
∆E is given by equation (2). At each step, all perime-
ter sites are considered and the probabilities of adding up
and down spins have to be evaluated. After proper nor-
malization of the probabilities the growing site and the
orientation of the spin are determined through a pseudo-
random number generator. It is worth mentioning that
while both the Hamiltonian and the Boltzmann probabil-
ity distribution considered for the MEM are the same as
the ones used for the Ising model in a rectangular geom-
etry with surface magnetic fields [9, 14], there exists an
essential difference between both models: namely, while
the Ising model deals with reversible spin configurations
in thermodynamic equilibrium, the MEM corresponds to a
far-from-equilibrium irreversible growth model. Therefore,
once the bulk of the aggregate is filled it becomes frozen
(i.e., it can not be modified any more due to further ad-
dition of spins). This property allowed us to use a very
well-known efficient simulation algorithm which periodi-
cally removes the frozen part of the aggregate and only

keeps track of the active growing interface. In this way
one saves computer memory and large aggregates can be
studied. In the present work we have used strips of widths
L = 32 and L = 64, and lengths as large as M = 3× 107,
generating spin aggregates of up to 109 particles. In order
to quantitatively characterize the behavior of the system
we have measured the average magnetization of the frozen
columns, given by

m(i, L, T,H) = (1/L)
L∑
j=1

Sij , (3)

which plays the role of an order parameter. Also, the prob-
ability distribution of the order parameter PL(m,T,H)
has been evaluated [15].

3 Results and discussion

It is worth mentioning that we have restricted ourselves
to the H ≥ 0 case without loosing generality. In fact,
first we have checked that the magnetic Eden growth pro-
cess in a confined geometry is characterized by an initial
transient followed by a non-equilibrium stationary state
that is independent from the starting seed. So, we have
particularly employed an initial seed entirely constituted
by up spins throughout. Thus, changing the sign of the
applied field (H → −H) corresponds to invert spin ori-
entation at every lattice site. Then, the order parameter
probability distribution can be simply obtained by replac-
ing PL(m)→ PL(−m). Analogous replacements also hold
for other observables that can be computed from PL(m),
such as the average of the absolute column magnetization
defined below (see Eq. (4)).

Figure 1 shows typical plots of the probability distri-
bution of the order parameter, as obtained for different
temperatures and fields (unless otherwise stated, we con-
sider the case of strip width L = 32 throughout).

Since the surface field is always assumed to be posi-
tive, all distributions are biased towards positive values
of m. Figure 1a shows a typical low-temperature dis-
tribution that corresponds to T = 0.5. There one ob-
serves that for weak fields two peaks of PL(m) clearly
emerge at m = ±1. Particularly, for H = 0 the distri-
bution is symmetric and the average magnetization van-
ishes. As naturally expected, for H > 0 the peak at
m = 1 is higher due to the applied surface fields. This
result points out that the system undergoes fluctuations,
since spin columns happen to be mainly builded up by
parallel-aligned spins with a single orientation, either up
or down. Increasing the field (H ≥ 0.75) the negative
peak of PL(m) vanishes showing that the surface field
is strong enough in order to suppress such fluctuations.
At T = 0.8 (Fig. 1b), PL(m) is strongly biased by the
field and only small peaks at m = −1 can be observed
for very weak fields (H < 0.25). It should also be noted
that the curvature of PL(m) changes, as compared to
Figure 1a. In fact, at T = 0.8 and for weak fields
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Fig. 1. Plots of the order parameter distribution function
PL(m) versus m obtained for different values of H as indicated
in the figures. (a) Results for T = 0.5. The vertical axis has
been truncated in order to allow a detailed observation of the
dependence of PL(m) with m. The inset shows a plot of PL(m)
versus m obtained taking H = 1.0, where the sharp peak at
m = 1 can be observed. (b) and (c) show results obtained for
T = 0.8 and T = 1.0, respectively. More details in the text.
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Fig. 2. (a) Plots of the order parameter versus the tempera-
ture obtained for different values of the surface magnetic field
as indicated in the figure. (b) Isotherms showing the depen-
dence of the order parameter with the surface magnetic field,
obtained for the temperatures indicated in the figure.

the amount of disorder in the aggregate is large enough
so that PL(m) becomes peaked around m & 0 and the
average magnetization is close to zero. The Gaussian-
like shape of the distribution curves for H < 0.5 be-
comes distorted by the effect of the field causing a shift
of the whole distribution towards larger values of m as
well as the occurrence of a sharper peak at m = 1,
that grows with increasing the applied field and be-
comes dominant for H ≥ 1. For higher temperatures
(T = 1.0 in Fig. 1c) the Gaussian shape for weak
fields can clearly be observed, while the bias caused by
the field has minor influence as compared with the for-
mer cases (Figs. 1a, b). Due to the observed fluctua-
tions of m(T,L,H), the order parameter as defined by
equation (3) will tend to vanish upon averaging over all
frozen columns. Therefore, in order to avoid this effect, it
is convenient to redefine the order parameter as the aver-
age of the absolute column magnetization [9], i.e.

〈|m(L, T,H)|〉 = (1/M∗)
M∗∑
i=1

|m(i, L, T,H)|, (4)

where M∗ < M is the number of frozen columns
where the growing process has definitively stopped, that
is, the number of completely filled columns. Figure 2a
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Fig. 3. Snapshot showing typical configurations of magnetic
Eden aggregates. Filled circles and crosses correspond to spins
pointing up (parallel to the magnetic surface field) and spins
pointing down, respectively. The lattice width is L = 32. (a)
T = 0.67 and H = 0.0. (b) T = 0.67 and H = 1.33. (c)
T = 0.33 and H = 1.33.

shows the dependence of 〈|m(L, T,H)|〉 on the temper-
ature for different values of the field, while Figure 2b
shows the plots of 〈|m(L, T,H)|〉 versus H obtained at
different fixed temperatures. At low temperatures (say
T < 0.4) and even for very weak surface fields, the
growth of magnetic Eden aggregates with chiefly parallel-
oriented spins is observed. The absolute magnetization
(and consequently the order) also remains quite large even
when temperature is increased up to T = 1 (Fig. 2a).
When comparing these plots with standard magnetic
systems in equilibrium, e.g. the Ising model with sur-
face fields [9], it is clear that for the lattices used in
this work the MEM order-disorder transition is strongly
rounded due to finite-size effects. The isotherms of
Figure 2b show that for each studied temperature there
exists a surface magnetic field capable of causing the sat-
uration of 〈|m|〉. Of course, the dependence of the or-
der parameter on the surface field at fixed temperature is
smooth, in contrast with the jumps observed in the Ising
system. This is not only attributable to finite-size effects.
Actually, the fact that the magnetic fields are only applied
to the boundaries of the aggregate (but not to the whole
bulk of spins) plays a major role.

Figure 3 shows typical MEM snapshot configurations
obtained at different temperatures and surface fields. The
different shapes of the growing interfaces observed in
Figure 3 can be understood on the base of simple argu-
ments. For H = 0 and due to the fact that open boundary
conditions are imposed at j = 1 and j = L, empty perime-
ter sites at the walls of the sample will experience a mix-
ing neighbor effect, that is, the average number of NN
occupied sites will be lower than for the case of perimeter
sites on the bulk. Consequently, the system will preferen-
tially grow along the center of the sample as compared
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Fig. 4. Plots of the averaged interface profile versus j obtained
for T = 0.7 and different values of the surface magnetic field
as indicated in the figure. The plot corresponding to H = 2.0
has been truncated in order to allow a detailed observation of
the profile’s curvature for lower H values.

to the walls, and the resulting growth interface will ex-
hibit a convex shape (Fig. 3a). For H > 0, the growing
probability of perimeter sites at the walls of the system
will be favored by an additional probabilistic factor given
by exp(±H/T ), as it follows from equation (2). If H/T
becomes large enough, the preferential growth along the
walls will dominate (Figs. 3b and 3c) and the interface cur-
vature will become concave. So, from a qualitative point
of view, the Figures 3a, b, c allow us to expect the oc-
currence of a convex-concave transition in the curvature
of the growth interface. Such transition is identified as a
non-equilibrium magnetic wetting transition, since a con-
cave interface wets the walls while they remain dry when
the interface grows with convex curvature.

In order to perform a quantitative study of the wet-
ting transition it is convenient to define the location and
the curvature of the growing interface. We assume that
each row of the system contributes with the outermost
perimeter site (i.e., the one with the largest value of the
longitudinal ith coordinate, for a given row number j) to
the growing interface. Let Ij(t) be the ith abscissa cor-
responding to the jth row at time t. Then, the interface
center of mass, that we take as the location of the interface
at time t, I(t), is given by

I(t) = (1/L)
L∑
j=1

Ij(t). (5)

Subsequently one can evaluate the coordinates of the in-
terface relative to its center of mass location at time t,
namely IRj(t) = Ij(t) − I(t), j = 1, 2, ..., L. In this way
we obtain a set {IRj(t)} that appropriately describes the
interface at any time t during the growing process. In or-
der to increase the statistics, we may evaluate the average
relative interface 〈IRj〉 given by

〈IRj〉 = {1/(tf − ti + 1)}
tf∑
t=ti

IRj(t) (6)
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Fig. 5. Plot of b versus H obtained for T = 2.00. The dot-
ted line shows the point where b changes its sign allowing us
to identify the critical wetting field (Hw), as indicated in the
figure. More details in the text.

where we take into account interface coordinates measured
at different times between ti and tf . Figure 4 shows plots
of 〈IRj〉 versus j corresponding to T = 0.7 for different
values of the surface field H. There, it becomes evident
how the applied field drives the convex-concave curvature
change. The curved interfaces have been fitted by means
of a fourth-degree polynomial given by p(j) = a+bj2+cj4,
where a = (L+1)/2. All fits were characterized by a domi-
nant quadratic term which defined the interface curvature
and a practically negligible quartic coefficient. Thus, the
sign change of the quadratic coefficient b allows the iden-
tification of the convex-concave curvature transition: for
b > 0 the interface is concave and the cluster wets the
walls, while for b < 0 it is convex and the walls remain
dry. So, given a fixed temperature T , the magnetic field
at the wetting transition Hw is the one that corresponds
to b = 0. Figure 5 shows a plot of b versus H obtained for
T = 2.0, where the change of sign of b can clearly be ob-
served. In this example, by means of a linear interpolation,
the value Hw = 1.67± 0.03 is obtained.

Following this procedure, we can quantitatively obtain
the wetting phase diagram Hw versus T . These results
are shown in Figure 6, which corresponds to strip widths
L = 32 and L = 64. They also suggest that the loca-
tion of the critical wet non-wet curve is only weakly sensi-
tive to finite-size effects. The monotonic growth of the Hw

versus T curves shown, reflects the fact that a larger sur-
face magnetic field is needed in order to stabilize the ther-
mal noise caused by higher temperatures.

4 Conclusions

In this work, rectangular strips on the square lattice are
used to grow magnetic Eden clusters with ferromagnetic
interactions between nearest neighbor spins and short
range magnetic fields applied at the surfaces. For weak sur-
face fields, the mixing neighbor effect at the surface causes
the growth of convex interfaces. However, when the field
is increased, the preferential growth of spins along the sur-
face turns the interface curvature concave. Such curvature
change has been rationalized in terms of a wetting tran-
sition, and the corresponding wet non-wet phase diagram

0 1 2 3
T

0

1

2

3

H
W

L = 32
L = 64

WET PHASE
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Fig. 6. Wetting phase diagram, Hw versus T , showing the crit-
ical line at the boundary between the wet and non-wet phases.
Results obtained for L = 32 and L = 64, as indicated in the
figure.

has been evaluated. We expect that the present study will
stimulate further work in the field of non-equilibrium wet-
ting transitions, a topic of widespread technological and
scientific interest which has remained almost unexplored
till the present.
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